Comparison of Visual, Refractive and Aberrometic Outcomes of Intacs® Implant and Toric Implantable Collamer Lens (TICL) in Patients with Keratoconus: 4 Years Follow Up

Document Type : Origenal Article

Authors

1 Ophthalmologist, Negah Eye Hospital , Tehran, Iran

2 MSc Student, Depatment of Ophthalmology, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Assistant Professor, Depatment of Ophthalmology, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Optometrist, Cohort Studies Center, Tehran University of Medical Sciences ,Tehran, Iran

5 Assistant Professor, Department Plastic Surgery, Modares Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

6 Medical Student, Modares Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

7 Assistant Professor, Department of Public Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran

8 Depatment of Ophthalmology, School of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran

Abstract

Background: To assess the efficacy and clinical outcomes following the use of toric implantable collamer lens (TICL) and Intacs® implant in patients with mild keratoconus.
Methods: This retrospective study evaluated 30 eyes of 30 patients with keratoconic and age of 25-35. These eyes were divided into group A (15 eyes), in which Visian Toric ICL™ was implanted, and group B (15 eyes), Intacs® implantation. The outcome and complications were evaluated. We assessed the visual, refractive, and aberrometric outcome in pre-operation and 6 month, and 1, 2, 3, and 4 year post-operation.
Results: There was significant difference in the mean uncorrected and best corrected distance visual acuities between the groups (P < 0.01). An uncorrected distance visual acuity of 20/30 or better was achieved in 85% of eyes in the TICL group, and 20% of eyes in the Intacs® group; visual acuity of 20/20 or better in was seen in 80% and 15%, respectively. Intacs® implant produced a significant decrease in corneal refractive spherical equivalent and coma aberration (P < 0.01).
Conclusion: Intacs® implant and TICL lens, both are useful, but it seems that the TICL is better and provides good visual and refractive outcomes; indicating that it is a more predictable procedure for refractive correction of keratoconus.

Keywords

Main Subjects


1. Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998; 42(4): 297-319.
2. Romero-Jimenez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: A review. Cont Lens Anterior Eye 2010; 33(4): 157-66.
3. Jaimes M, Ramirez-Miranda A, Graue-Hernandez EO, Navas A. Keratoconus therapeutics advances. World J Ophthalmol 2013; 3(3): 20-31.
4. Jhanji V, Sharma N, Vajpayee RB. Management of keratoconus: Current scenario. Br J Ophthalmol 2011; 95(8): 1044-50.
5. Marsack JD, Parker KE, Applegate RA. Performance of wavefront-guided soft lenses in three keratoconus subjects. Optom Vis Sci 2008; 85(12): E1172-E1178.
6. Reeves SW, Stinnett S, Adelman RA, Afshari NA. Risk factors for progression to penetrating keratoplasty in patients with keratoconus. Am J Ophthalmol 2005; 140(4): 607-11.
7. Lim L, Pesudovs K, Coster DJ. Penetrating keratoplasty for keratoconus: Visual outcome and success. Ophthalmology 2000; 107(6): 1125-31.
8. Porter J, Guirao A, Cox IG, Williams DR. Monochromatic aberrations of the human eye in a large population. J Opt Soc Am A Opt Image Sci Vis 2001; 18(8): 1793-803.
9. Jafri B, Li X, Yang H, Rabinowitz YS. Higher order wavefront aberrations and topography in early and suspected keratoconus. J Refract Surg 2007; 23(8): 774-81.
10. Schlegel Z, Lteif Y, Bains HS, Gatinel D. Total, corneal, and internal ocular optical aberrations in patients with keratoconus. J Refract Surg 2009; 25(10 Suppl): S951-S957.
11. Alio JL, Pinero DP, Aleson A, Teus MA, Barraquer RI, Murta J, et al. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. J Cataract Refract Surg 2011; 37(3): 552-68.
12. Alio JL, Vega-Estrada A, Esperanza S, Barraquer RI, Teus MA, Murta J. Intrastromal corneal ring segments: How successful is the surgical treatment of keratoconus? Middle East Afr J Ophthalmol 2014; 21(1): 3-9.
13. Perez-Merino P, Ortiz S, Alejandre-Alba N, de Castro A, Jimenez-Alfaro I, Marcos S. OCT-based Topography Corneal Aberrations And Ray Tracing Total Aberrations In Keratoconus Before And After Intracorneal Ring Treatment. Invest Ophthalmol Vis Sci 2012; 53(14): 97.
14. Jabbarvand M, Salamatrad A, Hashemian H, Mazloumi M, Khodaparast M. Continuous intracorneal ring implantation for keratoconus using a femtosecond laser. J Cataract Refract Surg 2013; 39(7): 1081-7.
15. Vega-Estrada A, Alio JL, Brenner LF, Burguera N. Outcomes of intrastromal corneal ring segments for treatment of keratoconus: Five-year follow-up analysis. J Cataract Refract Surg 2013; 39(8): 1234-40.
16. Vega-Estrada A, Alio JL, Brenner LF, Javaloy J, Plaza Puche AB, Barraquer RI, et al. Outcome analysis of intracorneal ring segments for the treatment of keratoconus based on visual, refractive, and aberrometric impairment. 
Am J Ophthalmol 2013; 155(3): 575-84.
17. Alio JL, Pinero DP, Daxer A. Clinical outcomes after complete ring implantation in corneal ectasia using the femtosecond technology: A pilot study. Ophthalmology 2011; 118(7): 1282-90.
18. Simoceli VP, Torquetti L, Simoceli RA, Ferrara P. Wavefront aberrations prior to and post-intrastromal corneal ring segment implantation in keratoconus. J Emmetropia 2013; 3: 139-44.
19. Sansanayudh W, Bahar I, Kumar NL, Shehadeh-Mashour R, Ritenour R, Singal N, et al. Intrastromal corneal ring segment SK implantation for moderate to severe keratoconus. J Cataract Refract Surg 2010; 36(1): 110-3.
20. Ha C, Choi SK, Lee DH, Kim JH. The clinical results of intrastromal corneal ring segment implantation using a femtosecond laser in keratectasia. J Korean Ophthalmol Soc 2010; 51(1): 1-7.
21. Shabayek MH, Alio JL. Intrastromal corneal ring segment implantation by femtosecond laser for keratoconus correction. Ophthalmology 2007; 114(9): 1643-52.
22. Antonios R, Dirani A, Fadlallah A, Chelala E, Hamade A, Cherfane C, et al. Safety and visual outcome of visian toric icl implantation after corneal collagen cross-linking in keratoconus: Up to 2 years of follow-up. J Ophthalmol 2015; 2015: 514834.
23. Navas A, Tapia-Herrera G, Jaimes M, Graue-Hernandez EO, Gomez-Bastar A, Ramirez-Luquin T, et al. Implantable collamer lenses after intracorneal ring segments for keratoconus. Int Ophthalmol 2012; 32(5): 423-9.
24. Shafik SM, El-Kateb M, El-Samadouny MA, Zaghloul H. Evaluation of a toric implantable collamer lens after corneal collagen crosslinking in treatment of early-stage keratoconus: 3-year follow-up. Cornea 2014; 33(5): 475-80.
25. Doroodgar F, Niazi F, Sanginabadi A, Niazi S, Baradaran-Rafii A, Alinia C, et al. Comparative analysis of the visual performance after implantation of the toric implantable collamer lens in stable keratoconus: A 4-year follow-up after sequential procedure (CXL+TICL implantation). BMJ Open Ophthalmol 2017; 2(1): e000090.
26. Kamiya K, Shimizu K, Kobashi H, Igarashi A, Komatsu M, Nakamura A, et al. Three-year follow-up of posterior chamber toric phakic intraocular lens implantation for the correction of high myopic astigmatism in eyes with keratoconus. Br J Ophthalmol 2015; 99(2): 
177-83.
27. Fadlallah A, Dirani A, El Rami H, Cherfane G, Jarade E. Safety and visual outcome of Visian toric ICL implantation after corneal collagen cross-linking in keratoconus. J Refract Surg 2013; 29(2): 84-9.